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E x p r e s s i o n s  are  g iven  r e l a t i ng  t h e  ve loc i t ies  w i t h  w h i c h  m e c h a n i c a l  v i b r a t i o n s  are  p r o p a g a t e d  in 
s ingle  c rys ta l s  of va r i ous  s y m m e t r i e s  to  t h e  a p p r o p r i a t e  e last ic  c o n s t a n t s .  S y m m e t r i e s  cons ide red  
a re :  t r i gona l  (seven elast ic  cons t an t s ) ,  t r i g o n a l  (six e last ic  cons t an t s ) ,  h e x a g o n a l ,  t e t r a g o n a l  (seven 
elastic constants), tetragonal (six elastic constants), and cubic. The expressions given derive from 
the Christoffel equations without introduction of approximations. 

In a previous communication Mayer & Parker (1961) 
have described a method which, in principle, allows 
evaluation of the elastic constants of single crystals 
belonging to the trigonal group (six elastic constants) 
from ultrasonic velocity measurements along a set of 
selected crystallographic directions. In the present 
paper we extend this method to other crystallographic 
groups; we use the general theory and notation estab- 
lished in the previous paper. As before, St = 
~O(Vl + V22 + V]), $2 = ~2(V41 + V~ + V4), where @ is the 
density, and V1, V2, V3 are the possible velocities of 
propagation of mechanical waves along a given direc- 
tion. 

1. Tr igona l  s y s t e m  (seven elast ic  constants)  

For trigonal systems whose first order elastic properties 
are described by seven independent elastic constants 
Cl l ,  C33, C44, C66, C13, C14, C25 with C66 = ½ ( C I 1 -  C12), 
we find 

S 1 - - = C n - ~ - C 4 4 - ~ - C 6 6 - ~ - n 2 ( 6 3 3 + C 4 4 - C l l - C 6 6 ) .  (1) 

S.,=n46~3 + (1 + n4)C~4 + (1 - n2)2A + 2n2(1 -n2)B 
-4mn(m2-312)D-4  In (12-3m2)E , (2) 

where 

A = (611-~- 666) 2 -  2611666 -~ 2(624 ~- C25), (3) 

B 2 4(C24 2 = 613 _~_ 2f_ 625) ~_ C44(611 -~- C66 ~- C33 -~- 2C13) , (4) 

D = C14(Cit + C44+ Ci~- C66), (5) 

E = 625(6112c 6 4 4 +  613 -- 666) • (6) 

There are many ways in which information about 
the elastic constants may be obtained from (1) and (2). 
A possible procedure is as follows: for direction 
[1, m, n] = [0, 0, 1] the Christoffel determinant is diag- 
onal and immediately gives C33 and C4a. For any 
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direction for which n = 0 ,  e.g., for [1, 0,0]  or for 
[0, 1, 0], equation (1) gives the numerical value of 
(Ca + C66), and equation (2) gives the numerical value 
of A. Then, equation (2) applied to two different 
directions for which l=m~:O, n~:O yields B. t Next, 
equation (2) applied to a direction such that  l = 0 ,  
m :~ 0, n ~: 0 gives D; and equation (2) applied to a 
direction such that  l:~0, m = 0 ,  n=~0 gives E. With 
A, B, D, and E known, and with the value of (Ca + C66) 
known, we have five relations among five elastic 
constants from which these constants can be deter- 
mined. Unfortunately, these relations are relatively 
complicated, and it is perhaps of advantage to consider 
the following auxiliary procedure. From theory of 
equations it is known that  the product of the three 
roots of the Christoffel determinant,  namely, ~3 Tz2 Tz2 T/2 --1 r 2  r 3  
is equal to the constant term of the secular equation 
(if the coefficient of the (~V2) 3 term is - 1 ) .  Applica- 
tion of this theorem shows that  

~3 ][72 TY21"72 
V1 ~2 ~3 = Cl1644666 - C225C66 C24Cll , 

and for direction [1, 0, 0] (7) 

~3 V~ V22 V23--- 611644666 - C25611 - C124666 , 

for direction [0, 1, 0] . (8) 

The sum of these relations is 

(X = 2644(CNC66)  2 2 -- (CI4 -t- C25 ) (611 -t- 666) (9) 

in which C4~ and (611+666)  a r e  known quantities, 
and cr can be determined from experiment. Solution 

2 2 of equation (9) for (614+625) and substitution into 
equation (3) yields an equation from which the 
numerical value of CllC66 can be determined. Since 
Cl1-~-C66 is known, Cn and C66 can now be found. 
These can be determined uniquely, since Cl1>0, 
C66 > 0. Furthermore, 2 2 C14+C25 now follows from 
equation (3), and the ratio C14/C25 follows from equa- 

. . . . . . . . . . . . .  

t Equat ion  (2) applied to two different directions for which 
l = -- m # 0, n # 0 will also yield B. 
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tions (5) and (6). This allows calculation of C~a and C2~ 
apart  from an ambiguity in sign. Also, equation (4) 
is now a quadratic equation in C~3 which yields two 
possible values for Ct~. Returning to equations (5) 
and (6), tha t  root of C13 and those signs of Cta and C2~ 
are chosen which make equations (5) and (6) self- 
consistent. With the constants determined in this 
manner, one may now return to equations (3) through 
(6) and calculate the values of the constants without 
the use of the auxiliary equation (9). This will improve 
the accuracy of the result, since the experimental 
error range affects equation (9) more seriously than 
equation (2). 

As remarked in our previous paper, the numerical 
values of some of the elastic constants determined 
in the above way are rather sensitive to the accuracy 
of velocity data. I t  is, therefore, advantageous, in 
general, to overdetermine the elastic constants by 
making measurements in more than the minimum 
number of directions required, and thus to reduce the 
error range. 

2. Tri~,onal system (six elastic constants) 

This is the system treated in the previous paper. 
We include it here for the sake of completeness, and 
Mso because the procedure for the evaluation of the 
elastic constants previously given was necessarily 
limited by the nature of the data of Wachtman et al. 
(1960). A set of independent elastic constants is Cll, 
C33, C44, C66, C13, C14. Equations (1) through (6) apply 
with C25 =0.  A possible procedure is as follows: for 
directions [1, 0, 0], [0, 1, 0], and [0, 0, 1] the Christoffel 
determinant  yields directly C~1, C33, C44, and C~6. 
From the S~ equation, and with l =  1 or m =  1 one 
obtains the value of C~. Then, the S~ equation applied 
to a direction for which l+0 ,  m = 0 ,  n=~0 gives the 
value of B, and subsequently, the Se equation applied 
to a direction for which l=0 ,  m=~0, n + 0  gives the 
value of D. Equation (4) is then quadratic in C~. 
With Ct~ known, equation (5) yields Ct~. That  value 
of C~3 is used which gives a C14 whose square is the 
one determined previously. 

3. Hexagonal system 
A set" of independen~ elastic constants is CH, C88, C44, 
C66, C13. Equations (1) through (6) apply with C25= 
C14=0, i.e., 

$1 = Cll -~- C44 -~- C66 "~- n2(C33 + C44- Cll - C66) , (10) 

S2=n4C~a + (1 + n4)C~4 + (1 - -  n2)2(C21 -{- C 2 6 )  

+ 2 n 2 ( 1 - n 2 ) B ,  (11) 
where 

B=C~3+Ca4(Cl~+C83+C66+2C13) • (12) 

A possible procedure is as follows: directions [0, 0, 1] 
and [0, 1, 0] or [1, 0, 0] yield Cll, Csa, C44, and C66 

from the diagonal form of the Christoffel determinant.  
Then, any direction for which n:~0, n~: 1 yields the 
numerical value of B from the $2 equation. A quadratic 
equation in C13 results which gives two possible values 
for C13. We encounter here the troublesome problem 
of extraneous calculated values for some of the elastic 
constants. This problem has been discussed by Alers 
& Neighbours (1957) and by Fisher & McSkimin (1958). 
As discussed there it is somctimes but  not always 
possible to discard extraneous values on the grounds 
of stability criteria. Our general t reatment  here fails 
in this respect, although for a given crystal it may be 
feasible to make a reasonable choice between the two 
possibilities. I t  may be thought tha t  consideration of 
the quant i ty  S3=~3(V6t+ V~+ V6), for whose com- 
putation all three coefficients al, a2, as of the secular 
equation are utilized, may resolve the ambiguity in 
C~8. However, computation of Ss shows tha t  this is 
not so. 

4. Tetragonal system (seven elastic constants) 

A set of independent elastic constants is Cll, Ca3, C44, 
C66, C12, C13, C16; one finds 

S1=Cl1--~C44--~-C66--~-n2(C33--~-C44-Cll-C66) , (13) 

$2 = n4C~a + (1 + n4)C~4 + 2n2(1 - n2)A + (1 - n2)2B 
+ 212m2D- 2(l 4 + m 4 ) E -  41m(m 2-12)F,  (14) 

where 

A = C~3 + C44(Cll + C33 + C66 + 2C13), (15) 

B = (Cll + C66) 2 + 2C~6 , (16) 

D 2 2 = C12-- Cll + 2C12C66 , (17) 

E = CllC66, (18) 

F = C16(Cl1+ C12) • (19) 

From the principal directions [1, 0, 0], [0, l, 0], and 
[0, 0, 1] one finds C83, C44, from equation (13) one 
finds (Cl1+C66). Since A, B, D, E, and F have dif- 
ferent coefficients in equation (14), they can be found 
from the $2 equation, again by making measurements 
along a number of properly chosen directions. (We give 
here no detailed procedure since there is no 'obvious' 
choice of directions in preference to others.) With 
A, B, D, E, and F known, and since Cll >0,  C66> 0, 
E gives C1, and C66. Then, from B, D, and F a self- 
consistent set of values for C12 and C~6 can be deter- 
mined. Finally, A yields the value of C13 (two roots). 
This ambiguity cannot be resolved by consideration 
of 83. 

5. Tetragonal system (six elastic constants) 
A set of independent elastic constants is Cll, C38, C44, 
C66, C12, C13. Equations (13) through (19) apply with 
C16=0. For directions [1, 0, 0], [0, 1, 0], and [0, 0, 1] 
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the diagonal forms of the Christoffel determinant give 
Cn, C88, C~, and C66. For a direction 1 :~ 0, m ~= 0, n = 0, 
the $2 equation yields D, from which C1~ can be 
determined (two roots). Subsequent application of the 
S~ equation to any direction n =~ 0, =~ 1 yields the value 
of A from which C13 can be determined (two roots). 
Consideration of the $3 equation shows that  the 
ambiguity in Cle can be resolved, but  not the am- 
biguity in C13. To be specific, in the $3 equation 
there occurs a term 12m~ne(C19 q- C66) (Cla -}- C44) 2. Since 
(Cla+C44) ~' is known from A, a unique value of C~. 
can be found. However, the only combination in 
which C~a occurs in Sa is (C1~ ÷ Ca4) ~ so tha t  no further 
information about C~a beyond that  contained in 
equation (14) is obtained. The ambiguity in Cla 
remains. 

6. Cubic s y s t e m  and isotropic  substances  

For the cubic system a set of independent elastic 
constants is Cm, C44, C12. The evaluation of these 
constants from velocity measurements is rather 
straightforward; the Christoffel equations yield them 
readily. Nevertheless, we include here the $1 and $2 
equations. Equations (13) through (19) apply with 
C88=Cm, C66=C~, C13=C12, and C16--0. After some 
rearrangement, 

$1 - 611 -~ 2C44, (20) 

$2 = C~ + 2C~4 + 2[n2( 1 - n ~) + 12m ~ ] 

X [(C12 + C44) 2 - ( C l l  - C44) 2] . (21) 

For C12 two roots are obtained from equation (21). 
The $8 equation contains a term in (C12 + C44) 3, hence 
the ambiguity in C19 is resolvable. 

The approach given here must also be correct 
for isotropic substances. Setting Cll = / t +  2/~, C44=/~, 
C1~-- ~, it is seen tha t  

S~ = 2 +4 / z ,  (22) 

$2 = / t  2 + 6# ~ + 4~t/z, (23) 

which is consistent with @ V~ 2-t- 2#, @ V~ = ,u-- @ V 2 3" 

7. Concluding r e m a r k s  

Implications arising from the form of S~ for a number 
of crystallographic groups have already been discussed 

by Haussiihl (1956, 1957, 1957a). Our discussion here 
is along the lines of Haussiihl's observations. 

I t  is well known that  V1 and V2 are independent 
of direction of propagation in isotropic media. There- 
fore, neither $1 nor $2 contain direction cosines l, m, n. 
In the cubic system V1, V2 and V8 are not independent 
of direction of propagation. Yet the expression for $1 
does not contain l, m or n. This implies tha t  the sum 
of the squares of the velocities (V~+ V~+ V~) is a 
constant for any direction of propagation despite the 
fact tha t  the individual values of the velocities vary  
with direction. For more complicated systems (up to 
but not including rhombic) the sum of the squares 
of the velocities is constant only for a given direction 
cosine + n. Therefore, for the cubic system the sum of 
the propagation velocities is an invariant,  and the 
end point of the propagation vector may  lie anywhere 
on a sphere around the origin (i.e. any possible com- 
bination of l, m, n) for the sum of the squares of the 
velocities to be an invariant. For the other systems 
discussed here the wave propagation vector may  
describe cones around the Z axis (i.e. a given Inl 
regardless of the possible 1 and m) for the sum of the 
squares of the velocities to remain constant. 

These properties can be helpful from the exper- 
imental point of view. If the three velocities are 
determined in a certain direction, only two velocities 
have to be measured in a direction described by the 
same [nl in order to compute the third velocity. For 
the cubic system this scheme may be used for any 
direction whatsoever, either as a means of finding an 
undetermined velocity or simply as a check for con- 
sistency. For more complicated symmetries the ex- 
pressions for $1 depend on l, m and n, and the sum 
of the squares of the velocities is no longer constant 
for a given [nl. 
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